### organic compounds

T = 291 (2) K

 $R_{\rm int}=0.015$ 

 $0.40 \times 0.30 \times 0.24 \text{ mm}$ 

8228 measured reflections 4911 independent reflections

3575 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### Nevirapininium picrate

# William T. A. Harrison,<sup>a</sup>\* T. V. Sreevidya,<sup>b</sup> B. Narayana,<sup>b</sup> B. K. Sarojini<sup>c</sup> and H. S. Yathirajan<sup>d</sup>

<sup>a</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, <sup>b</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, <sup>c</sup>Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and <sup>d</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: w.harrison@abdn.ac.uk

Received 15 August 2007; accepted 17 August 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.120; data-to-parameter ratio = 14.7.

The title compound,  $C_{15}H_{15}N_4O^+ \cdot C_6H_2N_3O_7^-$ , is the picrate salt of nevirapine, in which the cation and anion are linked by an N-H···O hydrogen bond. A second N-H···O interaction leads to centrosymmetric dimers of cations. The dihedral angle between the aromatic ring planes in the cation is 48.27 (8)°.

#### **Related literature**

For the structure of nevirapine, see: Mui *et al.* (1992). For related structures, see: Harrison, Ashok *et al.* (2007); Harrison, Bindya *et al.* (2007). For background, see: Herbstein & Kaftory (1976); Bartlett (2005); Gazzard (2005); Manosuthi *et al.* (2007).



#### **Experimental**

Crystal data  $C_{15}H_{15}N_4O^+ \cdot C_6H_2N_3O_7^ M_r = 495.42$ Triclinic,  $P\overline{1}$  a = 9.9921 (5) Å b = 10.2126 (5) Å

| 3 |
|---|
|   |

#### Z = 2Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$

#### Data collection

| Bruker SMART 1000 CCD                |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 1999)               |
| $T_{\min} = 0.955, T_{\max} = 0.972$ |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ H atoms treated by a mixture of<br/>independent and constrained<br/>refinement $wR(F^2) = 0.120$ refinement<br/> $\Delta \rho_{max} = 0.25$  e Å<sup>-3</sup><br/> $\Delta \rho_{min} = -0.21$  e Å<sup>-3</sup>

### Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                       | D-H           | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|----------------------------------------|---------------|-------------------------|-------------------------|------------------|
| $M3 = H3N \cdots O1^{i}$               | 0.881 (19)    | 2 063 (19)              | 2 9242 (17)             | 165 4 (16)       |
| N4-H4N···O11                           | 0.878 (19)    | 1.808 (19)              | 2.6656 (17)             | 164.9 (17)       |
| C9−H9···O14 <sup>ii</sup>              | 0.93          | 2.46                    | 3.386 (2)               | 174              |
| $C23-H23\cdots O15^{iii}$              | 0.93          | 2.49                    | 3.335 (2)               | 151              |
| Symmetry codes:<br>-x, -y + 2, -z + 2. | (i) $-x+1, -$ | -y + 1, -z; (ii         | ) $-x, -y+1, -x$        | -z + 2; (iii)    |

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

TVS thanks Mangalore University for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2026).

#### References

- Bartlett, J. G. (2005). Hopkins HIV Rep. 17, 6-7.
- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gazzard, B. (2005). HIV Med. 6, 1-61.
- Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, 03277.
- Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, 03143.
- Herbstein, F. H. & Kaftory, M. (1976). Acta Cryst. B32, 387-396.
- Manosuthi, W., Athichathanabadi, C., Uttayamakul, S., Phoorisri, T. & Sungkanuparph, S. (2007). BMC Infect. Dis. 7, 14–22.
- Sungkanuparpin, S. (2007). *BMC Inject. Dis.* 7, 14–22.
  Mui, P. W., Jacober, S. P., Hargrave, K. D. & Adams, J. (1992). *J. Med. Chem.* 35, 201–202.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3871 [doi:10.1107/S1600536807040731]

#### Nevirapininium picrate

### W. T. A. Harrison, T. V. Sreevidya, B. Narayana, B. K. Sarojini and H. S. Yathirajan

#### Comment

Nevirapine,  $C_{15}H_{14}N_4O$ , has several important biological applications: it is a non-nucleoside reverse transcriptase inhibitor (NNRTI) used to treat HIV-1 infection and AIDS (Bartlett, 2005) and it is an inducer of cytochrome P450 isoenzymes CYP3A4 and CYP2B6 (Gazzard, 2005). Nevirapine in triple combination therapy has been shown to suppress viral load effectively when used as initial antiretroviral therapy (Manosuthi *et al.*, 2007).

The crystal structure of nevirapine was described earlier (Mui *et al.*, 1992). In continuation of our work on the structures of pharmaceutical compounds (Harrison, Ashok *et al.*, 2007; Harrison, Bindya *et al.*, 2007), we now report the crystal structure of the title compound, (I), a molecular salt of nevirapine and picric acid.

The structure of (I) (Fig. 1) shows that proton transfer from picric acid (pa) to nevirapine (np) has occurred, and that the N atom of the methyl-substituted pyridine ring has been protonated. The dihedral angle between the C1—C5/N1 and C7—C11/N4 ring planes is 48.27 (8)°, which is substantially different to the equivalent value of 59° (no s.u. stated) for unprotonated nevirapine (Mui *et al.*, 1992). This difference may arise due to the flexibility of the central seven-membered ring. In (I), the bond-angle sum about N2 (350.6°) is ambiguous with respect to the hybridization of the nitrogen atom. The equivalent value for N3 (358.3°) equates to  $sp^2$  hybridization, perhaps due to delocalization with the adjacent pyridine ring (Mui *et al.*, 1992).

The significant variation of the C—C bond lengths around the picrate aromatic ring in (I) are normal and can be related to the contributions of various resonance forms involving the nitro groups (Herbstein & Kaftory, 976). The N11/O12/O13 nitro group in (I) is twisted from the benzene ring plane by 46.55 (12)°, whereas the other two nitro groups are close to co-planar with the ring [equivalent dihedral angles for N12/O14/O15 and N13/O16/O17 = 3.03 (11) and 12.2 (2)°, respectively].

The two constituents of (I) interact by a strong, near linear N4—H4N···O11 link (Table 1). Then, centrosymmetric associtions of these ion pairs arise from the N3—HN3···O1<sup>i</sup> (see Table 1 for symmetry code) bond (Fig. 2). Two short intermolecular C—H···O interactions also occur (Table 1) and a short  $\pi$ - $\pi$  stacking interaction involving the C1—C5/N1 ring and its inversion-generated partner at (1 - x, 2 - y, -z) with a centroid···centroid separation of 3.5486 (9)Å completes the structure of (I).

#### Experimental

Nevirapine (2.66 g, 0.01 mol) was dissolved in 25 ml of ethanol. Picric acid (2.29 g, 0.01 mol) was dissolved in 10 ml of water. The solutions were mixed and 5 ml of 5*M* HCl was added to this mixture and stirred for few minutes. The resulting solid was filtered, dried and yellow crystals of (I) were obtained by slow evaporation of an ethanol solution (m.p.: 489–491 K; analysis for  $C_{21}H_{17}N_7O_8$ : Found (calculated): C 50.88 (50.91); H 3.39 (3.46); N 19.71% (19.79%).

#### Refinement

The N-bound H atoms were located in difference maps and their positions were freely refined with  $U_{iso}(H) = 1.2U_{eq}(N)$ .

The C-bound H atoms were geometrically placed (C—H = 0.93–0.96 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl C)$ . The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

**Figures** 







Fig. 2. View of a dimeric association of ion pairs in (I) with all C-bound H atoms omitted for clarity. Symmetry code as in Table 1.

#### Nevirapininium picrate

| Crystal data                              |                                                 |
|-------------------------------------------|-------------------------------------------------|
| $C_{15}H_{15}N_4O^+ \cdot C_6H_2N_3O_7^-$ | <i>Z</i> = 2                                    |
| $M_r = 495.42$                            | $F_{000} = 512$                                 |
| Triclinic, <i>P</i> T                     | $D_{\rm x} = 1.515 {\rm ~Mg} {\rm ~m}^{-3}$     |
| Hall symbol: -P 1                         | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 9.9921 (5)  Å                         | Cell parameters from 3856 reflections           |
| b = 10.2126 (5) Å                         | $\theta = 2.3 - 27.5^{\circ}$                   |
| c = 11.5332 (6) Å                         | $\mu = 0.12 \text{ mm}^{-1}$                    |
| $\alpha = 70.716 \ (1)^{\circ}$           | T = 291 (2)  K                                  |
| $\beta = 77.980 \ (1)^{\circ}$            | Block, yellow                                   |
| $\gamma = 87.355 \ (1)^{\circ}$           | $0.40 \times 0.30 \times 0.24 \text{ mm}$       |
| $V = 1086.19 (9) \text{ Å}^3$             |                                                 |

#### Data collection

| Bruker SMART 1000 CCD<br>diffractometer  | 4911 independent reflections           |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | 3575 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                  | $R_{\rm int} = 0.015$                  |
| T = 291(2)  K                            | $\theta_{\rm max} = 27.5^{\circ}$      |
|                                          |                                        |

| ω scans                                                     | $\theta_{\min} = 2.1^{\circ}$ |
|-------------------------------------------------------------|-------------------------------|
| Absorption correction: multi-scan<br>(SADABS; Bruker, 1999) | $h = -12 \rightarrow 12$      |
| $T_{\min} = 0.955, T_{\max} = 0.972$                        | $k = -13 \rightarrow 13$      |
| 8228 measured reflections                                   | $l = -14 \rightarrow 14$      |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: difmap (N-H) and geom (C-H)                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.042$                                | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.120$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0639P)^2 + 0.0965P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.05                                                       | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 4911 reflections                                               | $\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$                               |
| 333 parameters                                                 | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x            | у            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|----|--------------|--------------|---------------|---------------------------|
| C1 | 0.30569 (18) | 1.05420 (17) | 0.08754 (17)  | 0.0448 (4)                |
| H1 | 0.2861       | 1.1430       | 0.0909        | 0.054*                    |
| C2 | 0.30848 (17) | 1.03144 (17) | -0.02357 (16) | 0.0426 (4)                |
| H2 | 0.2879       | 1.1015       | -0.0925       | 0.051*                    |
| C3 | 0.34278 (16) | 0.90120 (16) | -0.02970 (15) | 0.0373 (4)                |
| Н3 | 0.3497       | 0.8833       | -0.1047       | 0.045*                    |
| C4 | 0.36700 (14) | 0.79642 (14) | 0.07669 (13)  | 0.0300 (3)                |
| C5 | 0.35655 (14) | 0.83030 (14) | 0.18620 (14)  | 0.0306 (3)                |
| C6 | 0.41730 (15) | 0.66361 (15) | 0.05906 (14)  | 0.0329 (3)                |
| C7 | 0.31537 (15) | 0.51453 (14) | 0.27735 (13)  | 0.0310 (3)                |
| C8 | 0.30914 (15) | 0.60597 (15) | 0.34613 (13)  | 0.0313 (3)                |
| C9 | 0.16245 (17) | 0.44673 (17) | 0.51808 (15)  | 0.0413 (4)                |

| но   | 0 1121        | 0 4249       | 0 5008        | 0.050*     |
|------|---------------|--------------|---------------|------------|
| C10  | 0 16491 (17)  | 0.35632 (16) | 0 45418 (15)  | 0.0409 (4) |
| H10  | 0 1151        | 0 2730       | 0 4916        | 0.049*     |
| C11  | 0.24218 (16)  | 0.38812 (15) | 0.33232 (14)  | 0.0354 (3) |
| C12  | 0.2488 (2)    | 0.28451 (18) | 0.26464 (17)  | 0.0516 (5) |
| H12A | 0.2239        | 0.3280       | 0.1848        | 0.077*     |
| H12B | 0.1865        | 0.2082       | 0.3138        | 0.077*     |
| H12C | 0.3402        | 0.2510       | 0.2520        | 0.077*     |
| C13  | 0.40744 (19)  | 0.79138 (17) | 0.39300 (15)  | 0.0436 (4) |
| H13  | 0.3329        | 0.8414       | 0.4286        | 0.052*     |
| C14  | 0.4982 (2)    | 0.7114 (2)   | 0.47783 (19)  | 0.0604 (5) |
| H14A | 0.5339        | 0.6250       | 0.4675        | 0.072*     |
| H14B | 0.4787        | 0.7122       | 0.5636        | 0.072*     |
| C15  | 0.5491 (2)    | 0.8434 (3)   | 0.3756 (2)    | 0.0744 (7) |
| H15A | 0.5606        | 0.9242       | 0.3995        | 0.089*     |
| H15B | 0.6157        | 0.8370       | 0.3034        | 0.089*     |
| N1   | 0.32925 (14)  | 0.95717 (13) | 0.19133 (13)  | 0.0408 (3) |
| N2   | 0.38048 (13)  | 0.73279 (12) | 0.30040 (11)  | 0.0342 (3) |
| N3   | 0.40003 (14)  | 0.54343 (13) | 0.15722 (12)  | 0.0355 (3) |
| H3N  | 0.4310 (18)   | 0.4702 (19)  | 0.1367 (16)   | 0.043*     |
| N4   | 0.23304 (13)  | 0.56827 (14) | 0.46307 (12)  | 0.0362 (3) |
| H4N  | 0.2240 (18)   | 0.6221 (19)  | 0.5097 (17)   | 0.043*     |
| 01   | 0.47388 (13)  | 0.66345 (12) | -0.04642 (10) | 0.0478 (3) |
| C21  | 0.14876 (16)  | 0.71482 (16) | 0.73045 (14)  | 0.0356 (3) |
| C22  | 0.09458 (16)  | 0.83633 (15) | 0.76164 (14)  | 0.0354 (3) |
| C23  | 0.05246 (16)  | 0.84102 (16) | 0.88013 (15)  | 0.0373 (4) |
| H23  | 0.0128        | 0.9201       | 0.8940        | 0.045*     |
| C24  | 0.07029 (16)  | 0.72442 (16) | 0.98010 (14)  | 0.0361 (3) |
| C25  | 0.13314 (16)  | 0.60842 (16) | 0.95952 (15)  | 0.0356 (3) |
| H25  | 0.1474        | 0.5326       | 1.0271        | 0.043*     |
| C26  | 0.17471 (15)  | 0.60485 (15) | 0.83888 (15)  | 0.0346 (3) |
| N11  | 0.08437 (17)  | 0.96236 (14) | 0.65664 (14)  | 0.0460 (4) |
| N12  | 0.02625 (15)  | 0.72525 (16) | 1.10704 (14)  | 0.0450 (3) |
| N13  | 0.24590 (15)  | 0.48166 (14) | 0.82482 (14)  | 0.0432 (3) |
| 011  | 0.16134 (14)  | 0.71111 (13) | 0.62164 (11)  | 0.0528 (3) |
| O12  | 0.18419 (18)  | 0.99914 (15) | 0.57137 (15)  | 0.0781 (5) |
| O13  | -0.02037 (18) | 1.02612 (18) | 0.65992 (16)  | 0.0875 (6) |
| O14  | 0.04083 (15)  | 0.61899 (16) | 1.19367 (11)  | 0.0602 (4) |
| 015  | -0.02505 (17) | 0.83064 (15) | 1.12454 (13)  | 0.0670 (4) |
| O16  | 0.24491 (16)  | 0.38042 (13) | 0.91924 (13)  | 0.0620 (4) |
| O17  | 0.30523 (17)  | 0.48267 (15) | 0.72064 (13)  | 0.0704 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|    | $U^{11}$    | $U^{22}$   | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|------------|-------------|-------------|-------------|-------------|
| C1 | 0.0555 (10) | 0.0274 (8) | 0.0513 (10) | 0.0056 (7)  | -0.0086 (8) | -0.0145 (7) |
| C2 | 0.0482 (9)  | 0.0314 (8) | 0.0428 (9)  | 0.0041 (7)  | -0.0092 (7) | -0.0057 (7) |
| C3 | 0.0422 (8)  | 0.0363 (8) | 0.0331 (8)  | -0.0014 (6) | -0.0067 (7) | -0.0114 (7) |

| C4  | 0.0326 (7)  | 0.0267 (7)  | 0.0297 (7)  | -0.0021 (5)  | -0.0026 (6)  | -0.0100 (6)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C5  | 0.0312 (7)  | 0.0278 (7)  | 0.0327 (8)  | -0.0010 (5)  | -0.0037 (6)  | -0.0112 (6)  |
| C6  | 0.0379 (8)  | 0.0298 (7)  | 0.0309 (8)  | 0.0009 (6)   | -0.0038 (6)  | -0.0117 (6)  |
| C7  | 0.0381 (8)  | 0.0268 (7)  | 0.0288 (7)  | 0.0045 (6)   | -0.0078 (6)  | -0.0098 (6)  |
| C8  | 0.0363 (7)  | 0.0288 (7)  | 0.0294 (7)  | 0.0038 (6)   | -0.0078 (6)  | -0.0103 (6)  |
| С9  | 0.0469 (9)  | 0.0410 (9)  | 0.0300 (8)  | -0.0010(7)   | -0.0010(7)   | -0.0074 (7)  |
| C10 | 0.0488 (9)  | 0.0312 (8)  | 0.0372 (9)  | -0.0027 (7)  | -0.0045 (7)  | -0.0063 (7)  |
| C11 | 0.0442 (8)  | 0.0278 (7)  | 0.0345 (8)  | 0.0023 (6)   | -0.0101 (7)  | -0.0094 (6)  |
| C12 | 0.0739 (12) | 0.0345 (9)  | 0.0462 (10) | -0.0101 (8)  | -0.0026 (9)  | -0.0174 (8)  |
| C13 | 0.0577 (10) | 0.0426 (9)  | 0.0363 (9)  | -0.0056 (7)  | -0.0103 (8)  | -0.0192 (7)  |
| C14 | 0.0669 (13) | 0.0731 (14) | 0.0477 (11) | -0.0071 (10) | -0.0223 (10) | -0.0210 (10) |
| C15 | 0.0817 (15) | 0.0929 (17) | 0.0526 (12) | -0.0393 (13) | -0.0131 (11) | -0.0242 (12) |
| N1  | 0.0524 (8)  | 0.0301 (7)  | 0.0415 (8)  | 0.0026 (6)   | -0.0071 (6)  | -0.0154 (6)  |
| N2  | 0.0445 (7)  | 0.0297 (6)  | 0.0304 (7)  | -0.0012 (5)  | -0.0082 (5)  | -0.0121 (5)  |
| N3  | 0.0476 (7)  | 0.0256 (6)  | 0.0321 (7)  | 0.0034 (5)   | -0.0009 (6)  | -0.0127 (5)  |
| N4  | 0.0456 (7)  | 0.0342 (7)  | 0.0297 (7)  | 0.0019 (6)   | -0.0036 (6)  | -0.0142 (6)  |
| 01  | 0.0695 (8)  | 0.0366 (6)  | 0.0324 (6)  | 0.0056 (5)   | 0.0036 (6)   | -0.0139 (5)  |
| C21 | 0.0413 (8)  | 0.0334 (8)  | 0.0318 (8)  | 0.0001 (6)   | -0.0045 (6)  | -0.0122 (6)  |
| C22 | 0.0437 (8)  | 0.0275 (7)  | 0.0341 (8)  | -0.0004 (6)  | -0.0097 (7)  | -0.0078 (6)  |
| C23 | 0.0430 (8)  | 0.0322 (8)  | 0.0405 (9)  | 0.0028 (6)   | -0.0090 (7)  | -0.0169 (7)  |
| C24 | 0.0402 (8)  | 0.0380 (8)  | 0.0313 (8)  | -0.0019 (6)  | -0.0060 (6)  | -0.0134 (7)  |
| C25 | 0.0395 (8)  | 0.0335 (8)  | 0.0323 (8)  | -0.0013 (6)  | -0.0091 (6)  | -0.0077 (6)  |
| C26 | 0.0391 (8)  | 0.0296 (7)  | 0.0354 (8)  | 0.0020 (6)   | -0.0074 (6)  | -0.0114 (6)  |
| N11 | 0.0612 (9)  | 0.0333 (7)  | 0.0423 (8)  | 0.0015 (7)   | -0.0130 (7)  | -0.0095 (6)  |
| N12 | 0.0475 (8)  | 0.0534 (9)  | 0.0376 (8)  | 0.0016 (7)   | -0.0078 (6)  | -0.0203 (7)  |
| N13 | 0.0508 (8)  | 0.0354 (7)  | 0.0445 (8)  | 0.0080 (6)   | -0.0110 (7)  | -0.0148 (6)  |
| 011 | 0.0816 (9)  | 0.0462 (7)  | 0.0326 (6)  | 0.0143 (6)   | -0.0118 (6)  | -0.0172 (5)  |
| 012 | 0.0899 (11) | 0.0531 (9)  | 0.0639 (10) | -0.0085 (8)  | 0.0036 (8)   | 0.0066 (7)   |
| O13 | 0.0858 (12) | 0.0721 (11) | 0.0801 (12) | 0.0331 (9)   | -0.0187 (9)  | 0.0045 (9)   |
| O14 | 0.0723 (9)  | 0.0698 (9)  | 0.0320 (7)  | 0.0122 (7)   | -0.0091 (6)  | -0.0107 (6)  |
| O15 | 0.0913 (11) | 0.0638 (9)  | 0.0536 (8)  | 0.0143 (8)   | -0.0067 (8)  | -0.0359 (7)  |
| O16 | 0.0835 (10) | 0.0364 (7)  | 0.0571 (8)  | 0.0168 (6)   | -0.0146 (7)  | -0.0054 (6)  |
| O17 | 0.0959 (11) | 0.0658 (9)  | 0.0487 (8)  | 0.0363 (8)   | -0.0084 (8)  | -0.0262 (7)  |
|     |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| C1—N1 | 1.335 (2)   | C13—C15  | 1.486 (3)   |
|-------|-------------|----------|-------------|
| C1—C2 | 1.370 (2)   | C13—C14  | 1.490 (3)   |
| C1—H1 | 0.9300      | С13—Н13  | 0.9800      |
| C2—C3 | 1.379 (2)   | C14—C15  | 1.493 (3)   |
| С2—Н2 | 0.9300      | C14—H14A | 0.9700      |
| C3—C4 | 1.393 (2)   | C14—H14B | 0.9700      |
| С3—Н3 | 0.9300      | C15—H15A | 0.9700      |
| C4—C5 | 1.399 (2)   | C15—H15B | 0.9700      |
| C4—C6 | 1.4867 (19) | N3—H3N   | 0.881 (19)  |
| C5—N1 | 1.3296 (18) | N4—H4N   | 0.878 (19)  |
| C5—N2 | 1.4236 (19) | C21—O11  | 1.2480 (18) |
| C6—O1 | 1.2305 (17) | C21—C26  | 1.440 (2)   |
| C6—N3 | 1.3559 (19) | C21—C22  | 1.454 (2)   |
|       |             |          |             |

| <b>G- G</b> (4)                       |                          | G00 G00                    | 1 2 ( ) ( )              |
|---------------------------------------|--------------------------|----------------------------|--------------------------|
| C/C11                                 | 1.399 (2)                | C22—C23                    | 1.360 (2)                |
| С7—С8                                 | 1.4030 (19)              | C22—N11                    | 1.464 (2)                |
| C7—N3                                 | 1.4097 (18)              | C23—C24                    | 1.392 (2)                |
| C8—N4                                 | 1.3425 (19)              | С23—Н23                    | 0.9300                   |
| C8—N2                                 | 1.3933 (18)              | C24—C25                    | 1.382 (2)                |
| C9—N4                                 | 1.347 (2)                | C24—N12                    | 1.441 (2)                |
| C9—C10                                | 1.355 (2)                | C25—C26                    | 1.379 (2)                |
| С9—Н9                                 | 0.9300                   | C25—H25                    | 0.9300                   |
| C10-C11                               | 1.395 (2)                | C26—N13                    | 1.4557 (19)              |
| C10—H10                               | 0.9300                   | N11—O13                    | 1.207 (2)                |
| C11—C12                               | 1.500 (2)                | N11—012                    | 1.219 (2)                |
| C12—H12A                              | 0.9600                   | N12—O15                    | 1.2294 (19)              |
| C12—H12B                              | 0.9600                   | N12—O14                    | 1.2357 (19)              |
| C12—H12C                              | 0.9600                   | N13—O17                    | 1.2211 (18)              |
| C13—N2                                | 1.4587 (19)              | N13—O16                    | 1.2278 (18)              |
| N1—C1—C2                              | 124.23 (14)              | C15—C14—H14A               | 117.8                    |
| N1—C1—H1                              | 117.9                    | C13—C14—H14B               | 117.8                    |
| C2—C1—H1                              | 117.9                    | C15—C14—H14B               | 117.8                    |
| C1—C2—C3                              | 117.77 (16)              | H14A—C14—H14B              | 114.9                    |
| C1—C2—H2                              | 121.1                    | C13—C15—C14                | 60.03 (13)               |
| C3—C2—H2                              | 121.1                    | С13—С15—Н15А               | 117.8                    |
| C2—C3—C4                              | 119.89 (15)              | С14—С15—Н15А               | 117.8                    |
| С2—С3—Н3                              | 120.1                    | С13—С15—Н15В               | 117.8                    |
| С4—С3—Н3                              | 120.1                    | С14—С15—Н15В               | 117.8                    |
| C3—C4—C5                              | 117.31 (13)              | H15A—C15—H15B              | 114.9                    |
| C3—C4—C6                              | 116.49 (13)              | C5—N1—C1                   | 117.62 (14)              |
| C5—C4—C6                              | 125.80 (14)              | C8—N2—C5                   | 117.84 (12)              |
| N1—C5—C4                              | 123.08 (14)              | C8—N2—C13                  | 116.95 (12)              |
| N1—C5—N2                              | 114.28 (13)              | C5—N2—C13                  | 115.85 (12)              |
| C4—C5—N2                              | 122.58 (12)              | C6—N3—C7                   | 129.12 (13)              |
| 01—C6—N3                              | 120.04 (13)              | C6—N3—H3N                  | 113.9 (11)               |
| 01-C6-C4                              | 119 18 (13)              | C7 - N3 - H3N              | 1154(11)                 |
| N3—C6—C4                              | 120 77 (13)              | C8—N4—C9                   | 123 33 (13)              |
| C11-C7-C8                             | 119 18 (13)              | C8—N4—H4N                  | 122.4(12)                |
| C11—C7—N3                             | 119.10 (12)              | C9—N4—H4N                  | 122.1(12)<br>114.3(12)   |
| $C_{8}$ $C_{7}$ N3                    | 121 48 (13)              | 011-021-026                | 127.20(12)               |
| N4 - C8 - N2                          | 121.10(13)<br>118.15(12) | 011-021-020                | 127.20(11)<br>120.70(15) |
| N4 - C8 - C7                          | 118.47 (13)              | $C_{26}$ $C_{21}$ $C_{22}$ | 111 99 (13)              |
| $N_{2} = C_{8} = C_{7}$               | 123 36 (13)              | $C_{23} = C_{22} = C_{21}$ | 111.99(13)<br>125.00(14) |
| $N_2 = c_0 = c_1$                     | 123.30(13)<br>110.00(14) | $C_{23} = C_{22} = C_{21}$ | 123.00(14)               |
| $N_4 = C_2 = C_{10}$                  | 120.1                    | $C_{23} = C_{22} = N_{11}$ | 116.07(14)               |
| (10, 00, 00)                          | 120.1                    | $C_{21} = C_{22} = N_{11}$ | 110.93(13)               |
| $C_{10} = C_{10} = C_{11}$            | 120.1                    | $C_{22} = C_{23} = C_{24}$ | 120.0                    |
| $C_{2} = C_{10} = C_{11}$             | 120.04 (14)              | $C_{22} = C_{23} = H_{23}$ | 120.9                    |
| C11 C10 H10                           | 120.0                    | $C_{24} = C_{23} = H_{23}$ | 120.9                    |
| $C_{11} = C_{10} = \overline{C_{10}}$ | 120.0                    | $C_{23} = C_{24} = C_{23}$ | 120.94 (14)              |
| C10-C11-C/                            | 117.00 (14)              | $C_{23} = C_{24} = N_{12}$ | 119.13 (13)              |
| C10-C11-C12                           | 119.49 (14)              | $C_{23} - C_{24} - N_{12}$ | 119.89 (14)              |
| $C_1 = C_{11} = C_{12}$               | 121.41 (14)              | $U_{20} - U_{20} - U_{24}$ | 120.10 (15)              |
| C11—C12—H12A                          | 109.5                    | C26—C25—H25                | 120.0                    |

| C11—C12—H12B   | 109.5        | C24—C25—H25     | 120.0        |
|----------------|--------------|-----------------|--------------|
| H12A—C12—H12B  | 109.5        | C25—C26—C21     | 122.93 (14)  |
| C11—C12—H12C   | 109.5        | C25-C26-N13     | 116.69 (14)  |
| H12A—C12—H12C  | 109.5        | C21—C26—N13     | 120.37 (13)  |
| H12B—C12—H12C  | 109.5        | O13—N11—O12     | 123.37 (17)  |
| N2—C13—C15     | 116.94 (15)  | O13—N11—C22     | 118.84 (15)  |
| N2-C13-C14     | 116.71 (15)  | O12—N11—C22     | 117.77 (16)  |
| C15-C13-C14    | 60.23 (14)   | O15—N12—O14     | 122.93 (15)  |
| N2—C13—H13     | 117.0        | O15—N12—C24     | 118.83 (15)  |
| C15—C13—H13    | 117.0        | O14—N12—C24     | 118.24 (14)  |
| C14—C13—H13    | 117.0        | O17—N13—O16     | 122.36 (14)  |
| C13—C14—C15    | 59.74 (14)   | O17—N13—C26     | 119.31 (14)  |
| C13—C14—H14A   | 117.8        | O16—N13—C26     | 118.33 (14)  |
| N1—C1—C2—C3    | -2.5 (3)     | C15—C13—N2—C5   | -81.3 (2)    |
| C1—C2—C3—C4    | 2.9 (2)      | C14—C13—N2—C5   | -149.74 (15) |
| C2—C3—C4—C5    | -0.8 (2)     | O1—C6—N3—C7     | -165.46 (15) |
| C2—C3—C4—C6    | -173.88 (14) | C4—C6—N3—C7     | 13.8 (2)     |
| C3—C4—C5—N1    | -2.2 (2)     | C11—C7—N3—C6    | 138.44 (16)  |
| C6—C4—C5—N1    | 170.24 (14)  | C8—C7—N3—C6     | -45.4 (2)    |
| C3—C4—C5—N2    | -179.24 (13) | N2-C8-N4-C9     | -178.36 (15) |
| C6—C4—C5—N2    | -6.8 (2)     | C7—C8—N4—C9     | 0.2 (2)      |
| C3—C4—C6—O1    | 22.0 (2)     | C10-C9-N4-C8    | -0.8 (3)     |
| C5—C4—C6—O1    | -150.49 (15) | O11—C21—C22—C23 | 166.67 (16)  |
| C3—C4—C6—N3    | -157.26 (14) | C26—C21—C22—C23 | -9.7 (2)     |
| C5-C4-C6-N3    | 30.3 (2)     | O11—C21—C22—N11 | -13.0 (2)    |
| C11—C7—C8—N4   | 0.2 (2)      | C26—C21—C22—N11 | 170.67 (13)  |
| N3—C7—C8—N4    | -175.92 (14) | C21—C22—C23—C24 | 4.5 (2)      |
| C11—C7—C8—N2   | 178.69 (14)  | N11-C22-C23-C24 | -175.84 (14) |
| N3—C7—C8—N2    | 2.5 (2)      | C22—C23—C24—C25 | 2.1 (2)      |
| N4-C9-C10-C11  | 1.0 (3)      | C22—C23—C24—N12 | -179.67 (14) |
| C9—C10—C11—C7  | -0.6 (3)     | C23—C24—C25—C26 | -2.4 (2)     |
| C9—C10—C11—C12 | 177.43 (17)  | N12-C24-C25-C26 | 179.29 (14)  |
| C8—C7—C11—C10  | 0.0 (2)      | C24—C25—C26—C21 | -3.8 (2)     |
| N3—C7—C11—C10  | 176.22 (15)  | C24—C25—C26—N13 | 177.17 (13)  |
| C8—C7—C11—C12  | -178.01 (16) | O11-C21-C26-C25 | -166.96 (16) |
| N3—C7—C11—C12  | -1.8 (2)     | C22-C21-C26-C25 | 9.1 (2)      |
| N2-C13-C14-C15 | 107.25 (18)  | O11—C21—C26—N13 | 12.1 (3)     |
| N2-C13-C15-C14 | -106.86 (18) | C22-C21-C26-N13 | -171.83 (13) |
| C4—C5—N1—C1    | 2.7 (2)      | C23—C22—N11—O13 | -46.4 (2)    |
| N2             | 180.00 (14)  | C21—C22—N11—O13 | 133.22 (18)  |
| C2—C1—N1—C5    | -0.3 (3)     | C23—C22—N11—O12 | 131.86 (18)  |
| N4—C8—N2—C5    | -124.09 (15) | C21—C22—N11—O12 | -48.5 (2)    |
| C7—C8—N2—C5    | 57.4 (2)     | C25—C24—N12—O15 | 177.36 (15)  |
| N4—C8—N2—C13   | 21.2 (2)     | C23—C24—N12—O15 | -0.9 (2)     |
| C7—C8—N2—C13   | -157.30 (15) | C25—C24—N12—O14 | -3.3 (2)     |
| N1—C5—N2—C8    | 130.07 (13)  | C23—C24—N12—O14 | 178.44 (15)  |
| C4—C5—N2—C8    | -52.61 (19)  | C25—C26—N13—O17 | -167.53 (16) |
| N1—C5—N2—C13   | -15.56 (19)  | C21—C26—N13—O17 | 13.4 (2)     |
| C4—C5—N2—C13   | 161.75 (14)  | C25-C26-N13-O16 | 11.8 (2)     |

| C15—C13—N2—C8<br>C14—C13—N2—C8                                             | 132.73 (18)<br>64.3 (2) | C21—C26—N13—O16            |              | -167.29 (15) |
|----------------------------------------------------------------------------|-------------------------|----------------------------|--------------|--------------|
| Hydrogen-bond geometry (Å, °)                                              |                         |                            |              |              |
| D—H···A                                                                    | D—H                     | H···A                      | $D \cdots A$ | D—H··· $A$   |
| N3—H3N…O1 <sup>i</sup>                                                     | 0.881 (19)              | 2.063 (19)                 | 2.9242 (17)  | 165.4 (16)   |
| N4—H4N…O11                                                                 | 0.878 (19)              | 1.808 (19)                 | 2.6656 (17)  | 164.9 (17)   |
| C9—H9…O14 <sup>ii</sup>                                                    | 0.93                    | 2.46                       | 3.386 (2)    | 174          |
| C23—H23···O15 <sup>iii</sup><br>Symmetry codes: (i) $-x+1 - y+1 - z$ ; (ii | 0.93                    | 2.49<br>-v+2z+2.           | 3.335 (2)    | 151          |
|                                                                            | ,, , , ,, (),           | <i>, , , , , , , , , ,</i> |              |              |



Fig. 1



